Type: \(\displaystyle D^{1}_4\) (Dynkin type computed to be: \(\displaystyle D^{1}_4\))
Simple basis: 4 vectors: (1, 2, 2, 2, 2, 2, 1, 1), (0, -1, 0, 0, 0, 0, 0, 0), (0, 0, -1, 0, 0, 0, 0, 0), (0, 0, -1, -2, -2, -2, -1, -1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: D^{1}_4
simple basis centralizer: 4 vectors: (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of k-submodules of g: 37
Module decomposition, fundamental coords over k: \(\displaystyle V_{\omega_{2}}+8V_{\omega_{1}}+28V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, -1, -2, -1, -1)(0, 0, 0, 0, -1, -2, -1, -1)g_{-34}-\varepsilon_{5}-\varepsilon_{6}
Module 21(0, 0, 0, 0, -1, -1, -1, -1)(0, 0, 0, 0, -1, -1, -1, -1)g_{-28}-\varepsilon_{5}-\varepsilon_{7}
Module 31(0, 0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, 0, -1, -1, -1)g_{-22}-\varepsilon_{6}-\varepsilon_{7}
Module 41(0, 0, 0, 0, -1, -1, 0, -1)(0, 0, 0, 0, -1, -1, 0, -1)g_{-21}-\varepsilon_{5}-\varepsilon_{8}
Module 51(0, 0, 0, 0, -1, -1, -1, 0)(0, 0, 0, 0, -1, -1, -1, 0)g_{-20}-\varepsilon_{5}+\varepsilon_{8}
Module 61(0, 0, 0, 0, 0, -1, 0, -1)(0, 0, 0, 0, 0, -1, 0, -1)g_{-15}-\varepsilon_{6}-\varepsilon_{8}
Module 71(0, 0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, 0, -1, -1, 0)g_{-14}-\varepsilon_{6}+\varepsilon_{8}
Module 81(0, 0, 0, 0, -1, -1, 0, 0)(0, 0, 0, 0, -1, -1, 0, 0)g_{-13}-\varepsilon_{5}+\varepsilon_{7}
Module 91(0, 0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, 0, -1)g_{-8}-\varepsilon_{7}-\varepsilon_{8}
Module 101(0, 0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, 0, -1, 0)g_{-7}-\varepsilon_{7}+\varepsilon_{8}
Module 111(0, 0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, 0, -1, 0, 0)g_{-6}-\varepsilon_{6}+\varepsilon_{7}
Module 121(0, 0, 0, 0, -1, 0, 0, 0)(0, 0, 0, 0, -1, 0, 0, 0)g_{-5}-\varepsilon_{5}+\varepsilon_{6}
Module 1328(-1, 0, 0, 0, 0, 0, 0, 0)(1, 0, 0, 0, 0, 0, 0, 0)g_{1}
g_{9}
g_{-54}
g_{16}
g_{53}
g_{-52}
g_{-10}
g_{55}
g_{-50}
g_{-3}
g_{-2}
g_{56}
-h_{8}-h_{7}-2h_{6}-2h_{5}-2h_{4}-h_{3}
-h_{2}
-h_{3}
h_{8}+h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-56}
g_{2}
g_{3}
g_{50}
g_{-55}
g_{10}
g_{52}
g_{-53}
g_{-16}
g_{54}
g_{-9}
g_{-1}
\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{4}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{3}-\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
0
0
0
0
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
\varepsilon_{3}-\varepsilon_{4}
\varepsilon_{3}+\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{3}
\varepsilon_{2}-\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{2}
Module 141(0, 0, 0, 0, 1, 0, 0, 0)(0, 0, 0, 0, 1, 0, 0, 0)g_{5}\varepsilon_{5}-\varepsilon_{6}
Module 151(0, 0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 0, 1, 0, 0)g_{6}\varepsilon_{6}-\varepsilon_{7}
Module 161(0, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 0, 1, 0)g_{7}\varepsilon_{7}-\varepsilon_{8}
Module 171(0, 0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 0, 1)g_{8}\varepsilon_{7}+\varepsilon_{8}
Module 181(0, 0, 0, 0, 1, 1, 0, 0)(0, 0, 0, 0, 1, 1, 0, 0)g_{13}\varepsilon_{5}-\varepsilon_{7}
Module 191(0, 0, 0, 0, 0, 1, 1, 0)(0, 0, 0, 0, 0, 1, 1, 0)g_{14}\varepsilon_{6}-\varepsilon_{8}
Module 201(0, 0, 0, 0, 0, 1, 0, 1)(0, 0, 0, 0, 0, 1, 0, 1)g_{15}\varepsilon_{6}+\varepsilon_{8}
Module 211(0, 0, 0, 0, 1, 1, 1, 0)(0, 0, 0, 0, 1, 1, 1, 0)g_{20}\varepsilon_{5}-\varepsilon_{8}
Module 221(0, 0, 0, 0, 1, 1, 0, 1)(0, 0, 0, 0, 1, 1, 0, 1)g_{21}\varepsilon_{5}+\varepsilon_{8}
Module 231(0, 0, 0, 0, 0, 1, 1, 1)(0, 0, 0, 0, 0, 1, 1, 1)g_{22}\varepsilon_{6}+\varepsilon_{7}
Module 248(-1, -1, -1, -1, -2, -2, -1, -1)(1, 1, 1, 1, 0, 0, 0, 0)g_{23}
g_{-49}
g_{-47}
g_{-44}
g_{4}
g_{11}
g_{17}
g_{-51}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{4}-\varepsilon_{5}
\varepsilon_{4}-\varepsilon_{5}
\varepsilon_{3}-\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 251(0, 0, 0, 0, 1, 1, 1, 1)(0, 0, 0, 0, 1, 1, 1, 1)g_{28}\varepsilon_{5}+\varepsilon_{7}
Module 268(-1, -1, -1, -1, -1, -2, -1, -1)(1, 1, 1, 1, 1, 0, 0, 0)g_{29}
g_{-46}
g_{-43}
g_{-39}
g_{12}
g_{18}
g_{24}
g_{-48}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{6}
\varepsilon_{4}-\varepsilon_{6}
\varepsilon_{3}-\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 271(0, 0, 0, 0, 1, 2, 1, 1)(0, 0, 0, 0, 1, 2, 1, 1)g_{34}\varepsilon_{5}+\varepsilon_{6}
Module 288(-1, -1, -1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 1, 0, 0)g_{35}
g_{-42}
g_{-38}
g_{-33}
g_{19}
g_{25}
g_{30}
g_{-45}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
-\varepsilon_{4}-\varepsilon_{7}
\varepsilon_{4}-\varepsilon_{7}
\varepsilon_{3}-\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 298(-1, -1, -1, -1, -1, -1, 0, -1)(1, 1, 1, 1, 1, 1, 1, 0)g_{40}
g_{-37}
g_{-32}
g_{-27}
g_{26}
g_{31}
g_{36}
g_{-41}
\varepsilon_{1}-\varepsilon_{8}
-\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{8}
-\varepsilon_{4}-\varepsilon_{8}
\varepsilon_{4}-\varepsilon_{8}
\varepsilon_{3}-\varepsilon_{8}
\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{1}-\varepsilon_{8}
Module 308(-1, -1, -1, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 1, 0, 1)g_{41}
g_{-36}
g_{-31}
g_{-26}
g_{27}
g_{32}
g_{37}
g_{-40}
\varepsilon_{1}+\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{3}+\varepsilon_{8}
-\varepsilon_{4}+\varepsilon_{8}
\varepsilon_{4}+\varepsilon_{8}
\varepsilon_{3}+\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{8}
Module 318(-1, -1, -1, -1, -1, -1, 0, 0)(1, 1, 1, 1, 1, 1, 1, 1)g_{45}
g_{-30}
g_{-25}
g_{-19}
g_{33}
g_{38}
g_{42}
g_{-35}
\varepsilon_{1}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{7}
-\varepsilon_{4}+\varepsilon_{7}
\varepsilon_{4}+\varepsilon_{7}
\varepsilon_{3}+\varepsilon_{7}
\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
Module 328(-1, -1, -1, -1, -1, 0, 0, 0)(1, 1, 1, 1, 1, 2, 1, 1)g_{48}
g_{-24}
g_{-18}
g_{-12}
g_{39}
g_{43}
g_{46}
g_{-29}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{4}+\varepsilon_{6}
\varepsilon_{4}+\varepsilon_{6}
\varepsilon_{3}+\varepsilon_{6}
\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
Module 338(-1, -1, -1, -1, 0, 0, 0, 0)(1, 1, 1, 1, 2, 2, 1, 1)g_{51}
g_{-17}
g_{-11}
g_{-4}
g_{44}
g_{47}
g_{49}
g_{-23}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{4}+\varepsilon_{5}
\varepsilon_{4}+\varepsilon_{5}
\varepsilon_{3}+\varepsilon_{5}
\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
Module 341(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{5}0
Module 351(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 361(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{7}0
Module 371(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{8}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 9
Heirs rejected due to not being maximally dominant: 23
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 23
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_3
Potential Dynkin type extensions: D^{1}_4+A^{1}_1,